Create a Token Account
How to create a token account with the Confidential Transfer extension
The Confidential Transfer extension enables private token transfers by adding extra state to the token account. This section explains how to create a token account with this extension enabled.
The following diagram shows the steps involved in creating a token account with the Confidential Transfer extension:
Confidential Transfer Token Account State
The extension adds the ConfidentialTransferAccount state to the token account:
#[repr(C)]#[derive(Clone, Copy, Debug, Default, PartialEq, Pod, Zeroable)]pub struct ConfidentialTransferAccount {/// `true` if this account has been approved for use. All confidential/// transfer operations for the account will fail until approval is/// granted.pub approved: PodBool,/// The public key associated with ElGamal encryptionpub elgamal_pubkey: PodElGamalPubkey,/// The low 16 bits of the pending balance (encrypted by `elgamal_pubkey`)pub pending_balance_lo: EncryptedBalance,/// The high 48 bits of the pending balance (encrypted by `elgamal_pubkey`)pub pending_balance_hi: EncryptedBalance,/// The available balance (encrypted by `encryption_pubkey`)pub available_balance: EncryptedBalance,/// The decryptable available balancepub decryptable_available_balance: DecryptableBalance,/// If `false`, the extended account rejects any incoming confidential/// transferspub allow_confidential_credits: PodBool,/// If `false`, the base account rejects any incoming transferspub allow_non_confidential_credits: PodBool,/// The total number of `Deposit` and `Transfer` instructions that have/// credited `pending_balance`pub pending_balance_credit_counter: PodU64,/// The maximum number of `Deposit` and `Transfer` instructions that can/// credit `pending_balance` before the `ApplyPendingBalance`/// instruction is executedpub maximum_pending_balance_credit_counter: PodU64,/// The `expected_pending_balance_credit_counter` value that was included in/// the last `ApplyPendingBalance` instructionpub expected_pending_balance_credit_counter: PodU64,/// The actual `pending_balance_credit_counter` when the last/// `ApplyPendingBalance` instruction was executedpub actual_pending_balance_credit_counter: PodU64,}
The ConfidentialTransferAccount
contains several fields to manage
confidential transfers:
-
approved: The account's approval status for confidential transfers. If the mint account's
auto_approve_new_accounts
configuration is set astrue
, all token accounts are automatically approved for confidential transfers. -
elgamal_pubkey: The ElGamal public key used to encrypt balances and transfer amounts.
-
pending_balance_lo: The encrypted lower 16 bits of the pending balance. The balance is split into high and low parts for efficient decryption.
-
pending_balance_hi: The encrypted higher 48 bits of the pending balance. The balance is split into high and low parts for efficient decryption.
-
available_balance: The encrypted balance available for transfers.
-
decryptable_available_balance: The available balance encrypted with an Advanced Encryption Standard (AES) key for efficient decryption by the account owner.
-
allow_confidential_credits: If true, allows incoming confidential transfers.
-
allow_non_confidential_credits: If true, allows incoming non-confidential transfers.
-
pending_balance_credit_counter: Counts incoming pending balance credits from deposit and transfer instructions.
-
maximum_pending_balance_credit_counter: The count limit of pending credits before requiring an
ApplyPendingBalance
instruction to convert the pending balance to the available balance. -
expected_pending_balance_credit_counter: The
pending_balance_credit_counter
value provided by the client through the instruction data the last time theApplyPendingBalance
instruction was processed. -
actual_pending_balance_credit_counter: The
pending_balance_credit_counter
value on the token account at the time the lastApplyPendingBalance
instruction was processed.
Pending vs Available Balance
Confidential balances are separated into pending and available balances to prevent DoS attacks. Without this separation, an attacker could repeatedly send tokens to a token account, blocking the token account owner's ability to transfer tokens. The token account owner would be unable to transfer tokens because the encrypted balance would change between when the transaction is submitted and when it is processed, resulting in a failed transaction.
All deposits and transfer amounts are initially added to the pending balance.
Token account owners must use the ApplyPendingBalance
instruction to
convert the pending balance to the available balance. Incoming transfers or
deposits don't affect a token account's available balance.
Pending Balance High/Low Split
The confidential pending balance is split into pending_balance_lo
and
pending_balance_hi
because ElGamal decryption requires more computation for
larger numbers. You can find the ciphertext arithmetic implementation
here,
which is used in the ApplyPendingBalance
instruction
here.
Pending Balance Credit Counters
When calling the ApplyPendingBalance
instruction to convert the pending
balance to the available balance:
-
The client looks up current pending and available balances, encrypts the sum, and provides a
decryptable_available_balance
encrypted using the token account owner's AES key. -
The expected and actual pending credit counters track changes to the counter value between when the
ApplyPendingBalance
instruction is created and processed:expected_pending_balance_credit_counter
: Thepending_balance_credit_counter
value when the client creates theApplyPendingBalance
instructionactual_pending_balance_credit_counter
: Thepending_balance_credit_counter
value on the token account at the time theApplyPendingBalance
instruction is processed
Matching expected/actual counters indicate the decryptable_available_balance
matches the available_balance
.
When fetching a token account's state to read the
decryptable_available_balance
, different expected/actual counters values
require the client to look up recent deposit/transfer instructions matching the
counter difference to calculate the correct balance.
Balance Reconciliation Process
When the expected and actual pending balance counters differ, follow these steps
to reconcile the decryptable_available_balance
:
- Start with the
decryptable_available_balance
from the token account - Fetch the most recent transactions including deposit and transfer
instructions up to the counter difference (actual - expected):
- Add public amounts from deposit instructions
- Decrypt and add destination ciphertext amounts from transfer instructions
Required Instructions
Creating a token account with the Confidential Transfer extension requires three instructions:
-
Create the Token Account: Invoke the Associated Token Program's
AssociatedTokenAccountInstruction:Create
instruction to create the token account. -
Reallocate Account Space: Invoke the Token Extension Program's
TokenInstruction::Reallocate
instruction to add space for theConfidentialTransferAccount
state. -
Configure Confidential Transfers: Invoke the Token Extension Program's ConfidentialTransferInstruction::ConfigureAccount instruction to initialize the
ConfidentialTransferAccount
state.
Only the token account owner can configure a token account for confidential transfers.
The ConfigureAccount
instruction requires client-side generation of
encryption keys and proof data that can only be generated by the token account
owner.
The PubkeyValidityProofData
creates a proof that verifies an ElGamal key
is valid. For implementation details, see:
Example Code
The following code demonstrates how to create an Associated Token Account with the Confidential Transfer extension,
To run the example, start a local validator with the Token Extension Program cloned from mainnet using the following command. You must have the Solana CLI installed to start the local validator.
$solana-test-validator --clone-upgradeable-program TokenzQdBNbLqP5VEhdkAS6EPFLC1PHnBqCXEpPxuEb --url https://api.mainnet-beta.solana.com -r
At the time of writing, the Confidential Transfers isn't enabled on the default local validator. You must clone the mainnet Token Extension Program to run the example code.
use anyhow::{Context, Result};use solana_client::nonblocking::rpc_client::RpcClient;use solana_sdk::{commitment_config::CommitmentConfig,signature::{Keypair, Signer},transaction::Transaction,};use spl_associated_token_account::{get_associated_token_address_with_program_id, instruction::create_associated_token_account,};use spl_token_client::{client::{ProgramRpcClient, ProgramRpcClientSendTransaction},spl_token_2022::{extension::{confidential_transfer::instruction::{configure_account, PubkeyValidityProofData},ExtensionType,},id as token_2022_program_id,instruction::reallocate,solana_zk_sdk::encryption::{auth_encryption::*, elgamal::*},},token::{ExtensionInitializationParams, Token},};use spl_token_confidential_transfer_proof_extraction::instruction::{ProofData, ProofLocation};use std::sync::Arc;#[tokio::main]async fn main() -> Result<()> {// Create connection to local test validatorlet rpc_client = Arc::new(RpcClient::new_with_commitment(String::from("http://localhost:8899"),CommitmentConfig::confirmed(),));// Load the default Solana CLI keypair to use as the fee payer// This will be the wallet paying for the transaction fees// Use Arc to prevent multiple clones of the keypairlet payer = Arc::new(load_keypair()?);println!("Using payer: {}", payer.pubkey());// Generate a new keypair to use as the address of the token mintlet mint = Keypair::new();println!("Mint keypair generated: {}", mint.pubkey());// Set up program client for Token clientlet program_client = ProgramRpcClient::new(rpc_client.clone(), ProgramRpcClientSendTransaction);// Number of decimals for the mintlet decimals = 9;// Create a token client for the Token-2022 program// This provides high-level methods for token operationslet token = Token::new(Arc::new(program_client),&token_2022_program_id(), // Use the Token-2022 program (newer version with extensions)&mint.pubkey(), // Address of the new token mintSome(decimals), // Number of decimal placespayer.clone(), // Fee payer for transactions (cloning Arc, not keypair));// Create extension initialization parameters for the mint// The ConfidentialTransferMint extension enables confidential (private) transfers of tokenslet extension_initialization_params =vec![ExtensionInitializationParams::ConfidentialTransferMint {authority: Some(payer.pubkey()), // Authority that can modify confidential transfer settingsauto_approve_new_accounts: true, // Automatically approve new confidential accountsauditor_elgamal_pubkey: None, // Optional auditor ElGamal public key}];// Create and initialize the mint with the ConfidentialTransferMint extension// This sends a transaction to create the new token mintlet transaction_signature = token.create_mint(&payer.pubkey(), // Mint authority - can mint new tokensSome(&payer.pubkey()), // Freeze authority - can freeze token accountsextension_initialization_params, // Add the ConfidentialTransferMint extension&[&mint], // Mint keypair needed as signer).await?;println!("Mint Address: {}", mint.pubkey());println!("Mint Creation Transaction Signature: {}",transaction_signature);// ===== Create and configure token account for confidential transfers =====println!("\nCreate and configure token account for confidential transfers");// Get the associated token account address for the ownerlet token_account_pubkey = get_associated_token_address_with_program_id(&payer.pubkey(), // Token account owner&mint.pubkey(), // Mint&token_2022_program_id(), // Token program ID);println!("Token Account Address: {}", token_account_pubkey);// Step 1: Create the associated token accountlet create_associated_token_account_instruction = create_associated_token_account(&payer.pubkey(), // Funding account&payer.pubkey(), // Token account owner&mint.pubkey(), // Mint&token_2022_program_id(), // Token program ID);// Step 2: Reallocate the token account to include space for the ConfidentialTransferAccount extensionlet reallocate_instruction = reallocate(&token_2022_program_id(), // Token program ID&token_account_pubkey, // Token account&payer.pubkey(), // Payer&payer.pubkey(), // Token account owner&[&payer.pubkey()], // Signers&[ExtensionType::ConfidentialTransferAccount], // Extension to reallocate space for)?;// Step 3: Generate the ElGamal keypair and AES key for token accountlet elgamal_keypair = ElGamalKeypair::new_from_signer(&payer, &token_account_pubkey.to_bytes()).expect("Failed to create ElGamal keypair");let aes_key = AeKey::new_from_signer(&payer, &token_account_pubkey.to_bytes()).expect("Failed to create AES key");// The maximum number of Deposit and Transfer instructions that can// credit pending_balance before the ApplyPendingBalance instruction is executedlet maximum_pending_balance_credit_counter = 65536;// Initial token balance is 0let decryptable_balance = aes_key.encrypt(0);// Generate the proof data client-sidelet proof_data = PubkeyValidityProofData::new(&elgamal_keypair).map_err(|_| anyhow::anyhow!("Failed to generate proof data"))?;// Indicate that proof is included in the same transactionlet proof_location =ProofLocation::InstructionOffset(1.try_into()?, ProofData::InstructionData(&proof_data));// Step 4: Create instructions to configure the account for confidential transferslet configure_account_instructions = configure_account(&token_2022_program_id(), // Program ID&token_account_pubkey, // Token account&mint.pubkey(), // Mint&decryptable_balance.into(), // Initial balancemaximum_pending_balance_credit_counter, // Maximum pending balance credit counter&payer.pubkey(), // Token Account Owner&[], // Additional signersproof_location, // Proof location)?;// Combine all instructionslet mut instructions = vec![create_associated_token_account_instruction,reallocate_instruction,];instructions.extend(configure_account_instructions);// Create and send the transactionlet recent_blockhash = rpc_client.get_latest_blockhash().await?;let transaction = Transaction::new_signed_with_payer(&instructions,Some(&payer.pubkey()),&[&payer],recent_blockhash,);let transaction_signature = rpc_client.send_and_confirm_transaction(&transaction).await?;println!("Create Token Account Transaction Signature: {}",transaction_signature);Ok(())}// Load the keypair from the default Solana CLI keypair path (~/.config/solana/id.json)// This enables using the same wallet as the Solana CLI toolsfn load_keypair() -> Result<Keypair> {// Get the default keypair pathlet keypair_path = dirs::home_dir().context("Could not find home directory")?.join(".config/solana/id.json");// Read the keypair file directly into bytes using serde_json// The keypair file is a JSON array of byteslet file = std::fs::File::open(&keypair_path)?;let keypair_bytes: Vec<u8> = serde_json::from_reader(file)?;// Create keypair from the loaded bytes// This converts the byte array into a keypairlet keypair = Keypair::from_bytes(&keypair_bytes)?;Ok(keypair)}
Is this page helpful?